Self-Organizing Map and Multi-Layer Perceptron Neural Network Based Data Mining to Envisage Agriculture Cultivation
نویسندگان
چکیده
منابع مشابه
Self-Organizing Map and Multi-Layer Perceptron Neural Network Based Data Mining To Envisage Agriculture Cultivation
Study on characteristics of soil, to determine the types of crops suitable for cultivation in a particular region can increase the yield to greater extent, which minimizes the expenditures involved in irrigation and application of fertilizers. With the tested techniques available for calibrating the quality of soil and the crops suitable for cultivation in it, it is possible to determine the ex...
متن کاملA Modfied Self-organizing Map Neural Network to Recognize Multi-font Printed Persian Numerals (RESEARCH NOTE)
This paper proposes a new method to distinguish the printed digits, regardless of font and size, using neural networks.Unlike our proposed method, existing neural network based techniques are only able to recognize the trained fonts. These methods need a large database containing digits in various fonts. New fonts are often introduced to the public, which may not be truly recognized by the Opti...
متن کاملSelf-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture 423 Self-Organizing Polynomial Neural Networks Based on Genetically Optimized Multi-Layer Perceptron Architecture
In this paper, we introduce a new topology of Self-Organizing Polynomial Neural Networks (SOPNN) based on genetically optimized Multi-Layer Perceptron (MLP) and discuss its comprehensive design methodology involving mechanisms of genetic optimization. Let us recall that the design of the “conventional” SOPNN uses the extended Group Method of Data Handling (GMDH) technique to exploit polynomials...
متن کاملLandforms identification using neural network-self organizing map and SRTM data
During an 11 days mission in February 2000 the Shuttle Radar Topography Mission (SRTM) collected data over 80% of the Earth's land surface, for all areas between 60 degrees N and 56 degrees S latitude. Since SRTM data became available, many studies utilized them for application in topography and morphometric landscape analysis. Exploiting SRTM data for recognition and extraction of topographic ...
متن کاملlandforms identification using neural network-self organizing map and srtm data
during an 11 days mission in february 2000 the shuttle radar topography mission (srtm) collected data over 80% of the earth's land surface, for all areas between 60 degrees n and 56 degrees s latitude. since srtm data became available, many studies utilized them for application in topography and morphometric landscape analysis. exploiting srtm data for recognition and extraction of topographic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer Science
سال: 2008
ISSN: 1549-3636
DOI: 10.3844/jcssp.2008.494.502